
1  

Quasi-experimental causality in neuroscience and behavioral 
research 
 

Ioana E. Marinescu1*, Patrick N. Lawlor2, Konrad P. Kording3 
 
1School of Social Policy and Practice, University of Pennsylvania, Caster Building D6, 3701 Locust 
Walk, Philadelphia, PA 19104 
2Division of Neurology, Children’s Hospital of Philadelphia, Colket Translational Research 
Building, 3501 Civic Center Blvd Office 10200-11, Philadelphia, PA 19104 
3Departments of Neuroscience and Bioengineering, Leonard Davis Institute, Warren center for 
network science, Wharton Neuroscience Initiative, University of Pennsylvania, 106 Hayden Hall, 
240 S 33rd St., Philadelphia, PA 19104, Canadian Institute For Advanced Research  
*Corresponding author. Email: ioma@upenn.edu 
  
Abstract 
 
In many scientific domains, causality is the key question.  For example, in neuroscience, we might 
ask whether a medication affects perception, cognition, or action.  Randomized controlled trials 
(RCTs) are the gold standard to establish causality, but they are not always practical. The field of 
empirical economics developed rigorous methods to establish causality even when RCTs are not 
available. Here we review these quasi-experimental methods and highlight how neuroscience and 
behavioral researchers can use them to do research that can credibly demonstrate causal effects. 
 
 
Introduction 
 
 
Behavioral research asks a broad range of questions, and most of them are of a causal nature [1]. 
When we ask how a drug affects a patient, we want to know its causal effect:  does it make the patient 
better? We do not want to ask the correlational question: does taking the drug correlate with well-
being? Characteristics of the patient such as socioeconomic status may affect both the probability of 
being prescribed a drug and the patient’s well-being.  Similarly, in neuroscience we have many causal 
questions. For example, we are interested in how one brain area affects another brain area, as opposed 
to how the two brain areas are correlated.  In psychology, we ask which interventions improve 
people’s thriving, again not to be confused with correlation (people with big yachts are happier, but 
see [2]). The primary goal of the bulk of scientific research is to ask how elements of a system causally 
affect other elements. Causality is at the heart of many questions in behavior and neuroscience. 
 
Ignoring the difference between correlation and causality frequently leads scientists to incorrect 
conclusions.  In one notorious example from medicine, a correlational study suggested that hormone 
replacement therapy (HRT) may decrease the risk of cardiovascular disease in post-menopausal 
women [3].  A later randomized controlled trial, however, showed the opposite [4] – that HRT actually 
led to worse cardiovascular outcomes. The discrepancy likely resulted from influences of 
socioeconomic status [5]; women with higher socioeconomic status were both more likely to receive 
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HRT and to have better outcomes.  In neuroscience, we have the same problem; many studies are 
inherently correlational due to the difficulty of controlling neurons and neural states. Reliably 
identifying causality without randomized experiments is difficult. 
 
The crucial problem in causal inference is confounding. We would like to estimate the influence 
between two variables X and Y, but there may be other variables that affect both X and Y. If we set 
the value of X, as we do in a randomized experiment, there is no issue because the other variables 
can only affect Y. Running such experiments is the basis of the experimental method [6], and allows 
for a direct reading out of causal effects.  This has been done, often at great cost, for education (e.g., 
The Perry Preschool Project and The Carolina Abecedarian Project), neuroscience (e.g., optogenetics, 
slice stimulation), clinical psychology (e.g., therapy comparison), and is frequently done in online 
user interactions (e.g., AB tests).  In medicine, randomization is the gold standard and is called a 
randomized controlled trial (RCT). When we can set the relevant variables and randomize, answering 
causal questions meaningfully is far more straightforward. 
 
But if we can only observe a system, then confounding is a serious problem; we can never know if 
an apparent interaction between X and Y is real or is confounded by the other variables. This is often 
the case for a number of reasons. First, there are many variables that we cannot easily set, e.g., the 
activity of neurons somewhere in the brain. Second, setting variables is often expensive, e.g. in the 
case of large clinical trials [7-9]. Third, randomized experiments can be unethical, since they can force 
us to withhold the intervention that we believe to be best. When we cannot set all of the variables of 
interest, confounding is a serious issue which makes it hard to learn about the effect of one variable 
on another. Yet, most of the world’s ever-growing data do not come from randomized experiments 
and we should not waste this data.  
 
In response to the confounding problem in observational data, there are two important schools of 
thought. One school attempts to builds large, complex models that observe and model all 
confounders. Such models thus assume that confounding is unlikely or impossible. There are many 
widely-used methods that make this unconfoundedness assumption in neural and behavioral research 
e.g., Granger causality [10] (see Box 1 for others). However, unconfoundedness is rarely plausible as 
virtually all systems that we study have more variables of importance than we can realistically 
measure or model. A second school of thought that has arisen in response to the confounding problem 
focuses on quasi-experiments [11]. Although we may not assume unconfoundedness in general, we 
may still be able to find variables in our data that are assigned in a way that is as good as random. 
This paper focuses on discussing this second way of thinking about causal inference. 
 
This second school of thought mainly comes from econometrics, and over the last few decades has 
developed a number of ways in which meaningful causal estimates can be obtained without 
randomization.  Economists were obtaining unreliable results based on correlational methods, so they 
decided to “take the con out of econometrics” [12] by developing better tools for causal inference. 
Some of these methods include the Regression Discontinuity Design [13, 14], the Difference-in-
Differences approach [11] and Instrumental Variables [11].  These techniques are standard in 
economics yet are rarely used in many branches of behavioral and neuroscience research (although 
see Box 1 and Discussion for causal inference techniques already used in neuroscience).  
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Here we review these alternatives to randomization.  We take published examples, and explain the 
methods.  For each method, we then sketch how it could be used more widely across behavioral and 
neuroscience research using existing and emerging data. By systemically replacing correlational 
techniques with causal techniques, economics went through what they call a credibility revolution. 
Perhaps as a result, empirical work in economics has progressively overtaken theoretical work both 
in terms of citations within economics [15], and in terms of citations to economics papers made by 
articles in other fields [16].     
 
There are subfields of neuroscience that aspire to causal inference from observational data. Network 
neuroscience, for example, seeks to identify connectivity (often termed functional or effective 
connectivity) between brain regions using recorded time series from a variety of modalities (e.g., 
fMRI, EEG, spike trains) [17-20]. This connectivity is sometimes interpreted as causal, but the 
validity of this interpretation depends on context,  and a priori plausibility [21]. Importantly, the 
techniques listed below generally assume a lack of confounding by unobserved variables. In our 
view, this seems unlikely given the small number of observed signals and the high dimensionality 
of the brain. In this box, we review the most prominent techniques used in these fields. Note that 
these models can overlap, and that we have only presented the essence of each.  
Granger causal models: The core intuition of Granger causality is that causes temporally precede 
effects [10]. A variable X (a time series) is said to Granger-cause Y (also a time series) if earlier 
values of X and Y predict Y better than earlier values of Y alone. I.e., if the history of X improves 
predictions of Y, this is evidence that X causes Y. Granger causality has been used extensively in 
network neuroscience [22, 23] and macroeconomics [24], but not without criticism [25] .  
State-space models: This is a broad family of models [26, 27] in which one represents a system 
with one or more “state” variables to characterize “the way the system is”. State variables may or 
may not be observed, typically evolve over time, and can be related to system inputs and output. 
For example, hippocampal neural activity could be a state variable that is affected/caused by 
experimental conditions and gives rise to (causes) an fMRI BOLD signal which is measured. States 
can be modeled as causally affecting one another as well [28, 29]. This family of models includes 
Dynamic Causal Modeling [28, 30], some types of point-process models [31], and others.  
Structural equation models: This is a type of regression model with multiple equations [32]. There 
can be multiple dependent variables, and multiple independent variables. Dependent variables can 
also depend on other dependent variables. The dependencies between variables can, in some 
contexts, be given a causal interpretation. The parameters of these models are often found by 
regression approaches. Such models are also used in economics [33].  
Bayesian networks: This is a type of model that includes variables and their statistical 
dependencies [1, 34]. In this framework, causality can be viewed as the probabilistic influence 
variable X has on variable Y after taking into account other variables in the network. It is said to be 
Bayesian because variables have prior and likelihood distributions, and other tools of Bayesian 
statistics can be used. This is also a broad family of models, and has been used in both network 
neuroscience [35, 36] as well as human causal learning [37-40].  
 
Box 1: Overview of causal inferences techniques already used in neuroscience. 

 
 
When trying to infer causal effects, it is helpful to visually represent the variables under 
consideration and the relationships between them. Graphical models, widely used in computational 
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fields, provide a way to do this by representing each relevant variable as a circle (with a label), and 
each putative statistical relationship between two variables as a line connecting them. Causal 
relationships are represented by arrows which can be unidirectional or bidirectional. The variables 
included in a graphical model should be all relevant independent and dependent variables, as well 
as confounding variables which may affect the independent and dependent variables. Framed this 
way, the goal of causal inference becomes clearer: to estimate the strength and direction of the 
statistical relationships (lines/arrows) between variables after maximally accounting for the 
important components in the system. Actually estimating the statistical relationships depends on 
the specifics of the proposed model. 
 
Importantly, we should not assume that the variables we use in a graphical model can be 
experimentally controlled. We should, therefore, distinguish between observed variables and 
controlled (or set) variables. Observed variables always have the possibility of being affected by 
unknown and unmodeled confounding variables, whereas controlled variables are immune to this 
problem. Following Pearl [1], we use the notation of do(X) to indicate an experimentally controlled 
variable, and the unqualified X to indicate a variable that is simply observed.  
 
Consider an example addressed later in the text, in which we seek to find out whether maternal 
smoking affects a child’s birth weight. To form a graphical model of this scenario, we would 
specifically model maternal smoking and birth weight as variables in the system. Because we 
believe that smoking may influence birth weight, we would draw an arrow that points from maternal 
smoking to birth weight. We would also want to account for confounding factors, like 
socioeconomic status; these factors may influence both a mother’s smoking as well as birth weight. 
Socioeconomic status should also be specifically modeled in the graphical model, and we should 
draw arrows from socioeconomic status to both maternal smoking and birth weight. Furthermore, 
because ethically we cannot randomize maternal smoking, we cannot use the do() notation. The 
graphical model of this simplified system is shown below.  
 

 
 
 

 
 
Box 2: Introduction to graphical models in causal reasoning 
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Regression Discontinuity Design 
 
It is possible to approximate causality from a common property of decisions: thresholds for treatment.  
Treatment effects can often be estimated near thresholds, even without randomized experiments, 
because subjects near the threshold are similar.  This approach was originally developed by 
Thistlethwaite, who was interested in the effect of academic recognition of student outcomes [13]. In 
that study, students with test scores above a certain threshold were given Certificates of Merit and 
public recognition.  The students who received the certificate were clearly different from those that 
did not, e.g. in intelligence and socioeconomic status, so it was not possible to simply ask how 
Certificates of Merit affected outcomes.  However, as we approach the threshold score from either 
side, the students will become arbitrarily similar. This is because there is randomness in the exact 
score a student received due to e.g., question selection, or their last night’s sleep.  Thistlethwaite found 
that Certificates of Merit led to more future scholarships, but not to differences in long-term career 
plans [13].  This strategy, which is based on the idea that samples just above and just below the 
threshold are nearly indistinguishable, is the basis of the regression discontinuity design. 
 

 
Figure 1: Regression Discontinuity Design. A) Schematic of a Regression Discontinuity 
Design analysis. The treatment is only administered if the running variable is above the threshold. 
The outcome (y-axis) is plotted as a function of a running variable (x-axis). The magnitude of the 
treatment effect, the difference in outcome at the threshold, is estimated using regression. B) 
Schematic figure representing the analysis performed in [13]. Academic outcome (probability 



6  

of scholarship) is plotted as a function of test score, and a discontinuity is seen at the cutoff for 
receiving a certificate of merit. Note that this figure is stylized and does not use the data used in the 
original analysis; it is intended only to demonstrate the approach. C) Graphical model of 
Regression Discontinuity Design.  W are confounding variables; R is the running variable which 
determines the treatment along with the threshold;  X is the treatment (independent variable) which 
is either administered (do(X)) or not administered (do(not X)) depending on R; and Y is the 
outcome (dependent variable) of interest.  D) Graphical model representing this analysis. 
Socioeconomic status (for example) is likely to affect both test score and the probability of receiving 
a scholarship. Test score determines whether a certificate of merit is awarded, which in turn affects 
the probability of receiving a scholarship.  

 
 
To perform the analysis, a regression of outcome as a function of the running variable (e.g. test scores 
in the study by Thistlethwaite) is fit on both sides of the threshold.  A causal effect would be 
manifested by a discontinuity between the regression line on the left and on the right of the threshold 
(see Fig.  1).  This discontinuity in the outcome can only be from the treatment because no confounder 
is likely to have a discontinuity at exactly the same threshold (although it is standard to check this 
assumption).  The RDD gives a meaningful and often unbiased estimate of the causal effect of the 
treatment in the vicinity of the threshold [14]. 
 
 

Table 1: Possible applications of RDD in neuroscience and behavioral research 
 

Area Question Running variable Threshold Outcome 
variable 

Education How much does 
enrichment help? 

Test scores used 
for enrichment 

program 

Minimum 
test score 

Education 
outcome, 
income 

Medicine How much does blood 
pressure medication 

help? 

Blood pressure Treatment 
guideline 

Death by 
cardiovascular 

disease 
Counseling How many people 

should receive 
depression treatment? 

Risk score Enrollment 
threshold 

Mental health 

Advertising How much does an 
advertisement affect 
consumer behavior? 

Affinity score Money limit Sale of product 

Neural data 
science 

What are the neural 
requirements for 

movement? 

Neural drive Firing 
threshold 

Activity of a 
downstream 

neuron or 
muscle 

Neural theory How much would a 
larger synaptic weight 

increase reward-
seeking behavior? 

Neural drive Firing 
Threshold 

Behavioral 
change 
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It is important to be aware of the conditions needed for causal validity in RDD. Subjects must not be 
able to precisely control their score – and thus their treatment – e.g. by working long enough hours to 
achieve exactly the score that will put them over the threshold. A test for this assumption was 
developed by [41], which looks for a discontinuity in the number (i.e., density) of subjects on either 
side of the threshold.  Moreover, subjects must not be able to override the threshold mechanism for 
selection. Sometimes so-called fuzzy RDD approaches can deal with the problem of treatments not 
being perfectly administered [42].  Best practices for implementing RDD can be found in [14, 43]. 
Importantly, these methods allow checking whether the assumptions underlying RDD are valid. For 
example, potential confounders should not have a discontinuity at the threshold. While there are many 
statistical issues to consider for the RDD, there is an active community of practitioners furthering our 
already-strong understanding. 
 
RDD should allow us to discover causal effects in many domains (see table 1). Thresholds exist widely 
in  human  behavior  and  neuroscience,  and  there  are  very  few  variables  that  subjects can 
noiselessly control. For example, in the field of neural theory, we might ask how neurons can estimate 
their causal effect on animal performance which would allow asking if a larger weight would be better. 
The translation of neural drive to spiking has a firing threshold, which could allow neurons to estimate 
their causal effect [44]. There are countless possibilities to expand on the small set of current 
applications, e.g., [13, 45]. RDD thus promises to be useful for nearly every sub-field of behavioral 
research and neuroscience, ranging from education, medicine all the way to neural theory. 
 
 
Difference-in-Differences 
 
Another approach for approximating causality is to look for temporal trends in treated versus untreated 
subjects, even if they were not randomly assigned.  The core idea of this approach is to use longitudinal 
data for two groups where only one is treated, but where the two groups are similarly affected by 
extraneous factors. For example, [46] investigated the effect of academic year length on student 
outcomes.  It exploited a transient reduction in school year length which occurred in some but not all 
German states.  Thus, it was possible to compare outcomes between short-school-year states (the 
treatment group) and a regular-school-year state (the control group) to measure the effect of the 
shortened school year.  Grade repetition increased in the short-school-year states relative to the 
regular-school-year state after the short school year was introduced.  The length of the school year 
was thus found to have a causal effect on repeating grades. 
 
To perform the analysis, the temporal evolution of the outcome is measured for both the treated and 
the untreated group. This, in a way, generalizes the idea of baseline-controlled or two-factorial 
designs sometimes used in clinical trials. A quantification of the temporal difference between the 
treated and the untreated group then allows estimating the treatment effect (see Fig. 2). 
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Figure 2: A) Schematic of a Difference-in-Differences analysis. The trend of two groups, 
treated and untreated, is plotted as a function of time. Before the treatment, the trends of the two 
groups should be parallel (a constant difference-in-differences).  The treatment effect is estimated 
by the degree to which the trends diverge after the treatment is administered. B) Schematic 
figure representing the analysis performed in [46]. Outcome (probability of grade repetition) is 
plotted as a function of time, before and after the implementation of the short school year in some 
states. The difference between state outcomes changes after the change in school year (i.e., there 
is an increase in difference in differences). Note that this figure is stylized and does not use the 
data used in the original analysis; it is intended only to demonstrate the approach. C) Graphical 
model for Difference-In-Differences.  All variables are considered as a function of time, t.  W 
are confounding variables; X is the treatment (independent variable) which is administered 
(do(X)) to population 1, and not administered (do(not X)) to population 2; Y1 and Y2 are the 
outcomes (dependent variables) for populations 1 and 2, respectively; D is the difference between 
Y1 and Y2 and is tracked over time. D) Graphical model representing the analysis performed. 
Common trends such as federal taxes and economic conditions are likely to affect the two states 
similarly. The short school year is implemented only in one state. The difference in outcome is 
calculated from the two states’ outcomes. 

 
 
The Difference-in-Differences (DiD) approach naturally comes with its own assumptions and caveats, 
many of which we can explicitly test.  Most importantly, it assumes that the two groups are chosen 
such that they are similarly affected by relevant and perhaps unmeasured factors: this is the common 
trends assumption.  In the above example, the two groups of German states should be similarly 
affected by the economic context, other policy changes, etc. One way to provide support for this 
assumption is to check that trends in the outcome prior to the new treatment are parallel.  The groups 
should also be stable in composition (e.g. percentage of women in each group) over the period of 
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comparison. Extensions such as nonlinear DiD have also been developed [47]. Best practices for DID 
can be found in [11]. 
 
 

Field Question Comparison Outcome measured 
over time 

Educational 
policy 

How do smartphones 
affect middle school 

students? 

Two nearby school districts 
before and after a new 

smartphone policy change 

Standardized test 
scores, disciplinary 

action 
Rehabilitation How well does rehab 

work? 
Affected limb and unaffected 
limb before and after rehab 

Strength, 
coordination scores 

Neurology What are the effects 
of new brain lesions 

in MS? 

before and after unilateral 
lesion 

Strength, 
coordination scores 

Public  
relations 

Do ads have negative 
side effects? 

In versus outside of target 
area, before and after the start 

an ad campaign 

Attitudes towards ads 

Table 2: Possible applications of Difference-In-Difference approaches 
 
 
DiD approaches should also be broadly applicable in behavioral science and neuroscience (see table 
2).  Many, if not most, variables in neuroscience and behavior are measured over time. And many 
interventions affect some people or neurons (the treatment group) but not others (the control group). 
DiD thus promises to be useful across most sub-disciplines that deal with behavior.  
 
Instrumental Variables 
 
A third common approach for quasi-experimental causal inference is Instrumental Variables (IV) 
[48]. With this approach, we seek to identify variables Z  (“instruments”)  that  causally  affect  the  
independent  variable  of  interest  X, but  only  causally  affect  the  dependent  variable  Y  through  
X (Fig. 3).  For example, [49] sought to ask how maternal smoking affects birth weight. We should 
expect heavy confounding as e.g., low socioeconomic status may affect both smoking and health. 
Instead, the authors leveraged tobacco taxes as an instrument, which arguably affects smoking but 
does not directly affect birth weight. Differences in tobacco taxes across years and across states could 
then be exploited to estimate the causal effect of smoking on birth weight.   They found that maternal 
smoking decreased birth weight by between 300 and 600 grams. 
 
To perform an IV analysis, we first identify the independent and dependent variables.  Next we find, 
through an understanding of the system, another variable that can serve as an instrument (taxes in the 
above example) that only affects the independent variable. Next, we build a predictive model of the 
treatment X based on the instrument Z (first stage regression). And then we use this prediction in a 
second stage regression to quantify the causal effect of treatment (e.g. smoking) on the dependent 
variable (birth weight in the above example). The essence of this approach is that it identifies changes 
in the dependent variable that occur as a result of varying the independent variable; the instrument 
can be viewed as a rudimentary experimental manipulation of the independent variable. Simply 
regressing the dependent variable on the independent variable would be confounded by e.g., 
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socioeconomic status in the above example. Such IV approaches allow yet one more way to 
meaningfully deal with unobserved confounders. 
 

 
Figure 3:  A) Graphical model for Instrumental 
Variables. W are confounding variables; X is the 
independent variable; Y is the outcome (dependent 
variable); Z is the instrument which only affects Y 
through its effect on X. B) Graphical model 
representing the analysis performed. Graphical model 
representing this analysis performed in [49]. Maternal 
smoking is thought to affect birth weight. But 
socioeconomic status (for example) likely affects both a 
mother’s decision to smoke as well as the child’s birth 
weight. A tax on cigarette smoking could affect maternal 
smoking but is unlikely to directly influence the birth 
weight, except through an effect on maternal smoking. 
Such a tax is therefore a good instrument to examine the 
effect of smoking on birth weight without being 
confounded by socioeconomic status. 

 
 
The IV approach also has its assumptions and caveats.  The most important assumption is the 
exclusion restriction: the instrument (e.g., tobacco taxes) should affect the dependent variable (e.g., 
birth weight) only through its effect on smoking. I.e., we should be able to exclude that the instrument 
affects the outcome other than through the independent variable.  The exclusion restriction is not 
directly testable and must therefore be assessed on plausibility grounds given what we know about 
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the phenomenon at hand. Furthermore, the instrument should not be too weakly correlated with the 
independent variable of interest, in order to produce useful estimates. The F test for the first stage can 
measure how strong the instrument is [50]. Best practices and further discussion of IV can be found 
in [11]. 
 
 

Medicine Does a medication 
affect patient 
outcomes? 

Medication use Patient outcome Hospital rules 
about 

pharmaceutical 
reps 

Neuroscience How does brain 
region A affect region 

B? 

Brain region A 
activity 

Brain region B 
activity 

Diffuse 
optogenetic 

stimulation of 
brain region A 

Behavioral 
health 

Does alcohol 
consumption make 
you a bad parent 

Alcohol 
consumption 

Parenting 
license exam 

Alcohol taxes 

Education Does having more 
disposable income 

improve educational 
outcomes? 

Income Educational 
outcome 

Income tax cut 

Table 3: Possible applications of Instrumental Variable approach 
 
Instrumental variable approaches should also be broadly applicable in behavioral science (see table 
3).  Typical experiments have many variables that are not experimentally randomized, yet affect the 
system. For example, metabolism affects neural activity which affects behavior; markers of 
metabolism could therefore be viewed as instruments to ask how neural activity gives rise to 
behavior. Many such variables are random with respect to behavior, and could just as easily be viewed 
as instruments. Even standard techniques like optogenetics may be better viewed as instruments [51]. 
Optogenetics does not precisely set neural activity; it only affects it. Hence, it may be useful to view 
optogenetic stimulation of brain region X as an IV, and then use that model to ask how brain region 
X affects region Y. More generally, it may be possible to create biological constructs with IV-like 
properties; e.g., a molecular construct that inactivates individual neurons at random times. In 
summary, Instrumental Variables are an approach to get good results by using existing, non-
experimental randomization. 
 
 
Discussion 
 
Here we have argued that understanding causal effects is the goal of the bulk of both behavioral 
science and neuroscience, and that these fields need to adopt better techniques for making causal 
inferences. We have reviewed three prominent quasi-experimental approaches developed in 
economics, explained their application, and suggested ways that they might be applied in a number of 
examples using already-existing data. These techniques promise to move our data analysis towards a 
causal understanding. We chose three particular techniques – Regression Discontinuity Design, 
Difference-In-Differences, and Instrumental Variables – but many other techniques for estimating 
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causal influence exist. For example, Bayesian networks [34] and Structural Equations [32] can be 
used to model networks of relevant variables and to estimate causal relationships between them.  
Propensity Score Matching estimates causal effects between treated and untreated subjects by 
adjusting for observed confounders that predict treatment [52-54]. Other techniques use noise 
distributions to estimate the direction of causal influence [55]. Synthetic controls may be a valuable 
way to construct better control/comparison groups for case control and DiD studies [56]. In this 
Perspective, however, we focused on quasi-experimental approaches as these approaches readily 
allow dealing with unobserved confounders that make causal inference difficult in behavioral science 
as well as neuroscience. 
 
Neuroscience and psychology do have a history of using techniques that attempt to recover causal 
influences from data. Network neuroscience has used a large suite of approaches (see Box 1) with the 
goal of deciphering the complex networks of the brain. This is an important line of work, but whether 
these techniques actually recover true causal effects in this context remains an open question [21, 25]. 
Many challenges exist such as possible omitted variables, and the difficulty of modeling information 
transformation between brain regions [18, 21]. Although some of the techniques we present could be 
applied towards this purpose, we view RD, DiD, and IV as more general approaches that exploit 
different aspects of data than network approaches. RD exploits thresholds, which is clearly different 
from the network approaches. DiD exploits common trends even when confounders are not always 
identifiable, whereas network approaches generally are sensitive to omitted confounders [35]. IV 
identifies non-experimental randomization, and although it could be incorporated into network 
approaches, we believe that its use is far more general. We therefore believe that the techniques 
discussed in this paper widen the scope of data available for causal analysis in neuroscience and 
behavioral science.  
 
Techniques for quasi-experimental causal inference are ripe for application in behavioral science and 
neuroscience. They could fruitfully be applied to existing laboratory data, such as neuroimaging, 
virtual reality behavior, or neural spike recordings.  This may allow us to extract more valuable 
information from these data.  But these techniques also make it possible to perform credible analyses 
of the kind of observational data offered by the information age [57] that is much cheaper and much 
more common than laboratory data.  Thresholds exist everywhere, in online systems [58], economic 
activity (e.g.  tax notches, see [59]) but especially in medicine [45], making RDD, with its clean 
treatment of confounders, an invaluable tool.  Wherever parallel trends exist, DiD promises to give 
our analyses better controls. And identifying valid instruments on independent variables of interest 
will help us to tease apart causal relationships with IV.  Every neuroscientist and behavioral scientist 
should become familiar with these techniques. 
 
In the 1980s it became obvious in economics that the typical correlational findings were not overly 
indicative of real causal effects. This led the field of econometrics to decide to work towards methods 
that allow the quantification of causality [60].  In the following decades, causal inference improved 
massively and today the bulk of top economics papers uses standard causal inference strategies [60].  
 
Neuroscience and behavioral science have the same problem: we write stories about causality in 
behavior and brains based on correlational data, whereas we need techniques that can reliably 
demonstrate causal effects. Many techniques currently used in neuroscience may actually be 
misleading us [25] because we misunderstand whether they measure causal effects. Furthermore, a 
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focus on causal effects should help us to focus on which effects are worth caring about, such as 
behavior [61]. This understanding of the deeply problematic basis of this kind of inference is slowly 
taking hold in the community. To lead to a deeper understanding of minds and brain, we need to take 
the causal questions seriously. We can only do so by applying techniques that allow answering those 
questions. 
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